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1. (d) Suppose we have a SISO system,

& = Az + Bu, x € R", A Hurwitz
y=Cux, y,u €R
u=—(t,y), Y € [~k,0,k>0

Let V(z) = 27 Px. Then,

V(z) = iTPr+2TPi
= [2TAT —¢BT|Px + 27 P[Az — By]
aT[ATP + PAjx — 22T PBy

Sector nonlinearity implies that —2[ky + ]y > 0,

Viz) < aT[ATP + PAJx — 20T PBy — 2[ky + 4]
= 2T[ATP + PAJx + 227 [-kCT — PBJp — 2¢*

Now, find P > 0, L and € > 0 such that

ATP 4+ PA —LTL—eP
PB = —kCT —L"TV2,

then,

—exTPx — 2T LT Lo 4 227 LT V24 — 2¢?
= —ex"Px— [La — V2y) [La — V2U]
—ex’ Pg

0

<
<

According to Kalman-Yakubovich-Popov (Positive Real) Lemma, we can construct a transfer
matrix

Z(s) = —kC(sI — A 'B+1

where Z(s) is strictly positive real (SPR). We then have

Re[-kG(jw) + I] > 0 < Re[-G(jw)] > —%.

For the special case —k = «, we have the system stable in (a,0), if G is Hurwitz and

Re[-G(jw)] > é.



(e) We can apply similar argument as shown in the lecture notes: Consider the loop transformation

+ +
U G(s) >y

>~
A

&
A
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where K, is chosen such that
Gr(s) = G - KoGl(s)] ™"

is asymptotically stable. Now let the new non-linearity to be ¥r(t,y) = ¥(t,y) + K,y. Suppose
1 is a [-Kg, —K,]-sector non-linearity where Kg > K, we have
ve[-Kp—Kd] = [+ EKpyl[ + Kay] <0
=  Yr[r — Koy + Kpy] <0
= Yrlr + (K — Ko )yl <0
— wTE[—K,O] fOI‘K:Kﬁ—Ka>O
Thus, applying the conclusion from (d) to the system Grp(s) and the sector non-linearity ¢ €

[-K,0], the sufficient condition for absolutely stable of the closed-loop is G'r(s) Hurwitz and
Zr(s) = I — KGr(s) strictly positive real.

Here, since K, was taken to be the boundary of the sector, we need to verity the stability of
Gr(s). Let K, = —f, and Kg = —c, we have

Gr(s) = G(s)[1 + BG(s)]

and since
_ G(s)
Zr(s) = 1-(B— a)m
_ 1+aG(s)
1+ BG(s)
is strictly positive real. we have
1+ aG(jw)
Re{1 +[3G(jw)} >0, Vw>0.
For o« < B < 0, base on the diagram shows below, we have
1+ aG(jw) —1/a— G(jw)
2T Re| —/— 7%/
e[y +BG(jw)] -0 = e[—l/ﬁ— G(jw)} >0
BP
< cos(h —62) >0
T 3T
= 0¢[57]
<= P not in the circle D(—p, —a)



Im(-G{w))

> Re(-G(w))

Since Gr(s) = G(s)[1 — B(—G(s))]~! has to be Hurwitz for the result to hold, it implies that
—G(jw) needs to encircle (1/5,05) or disk D(—f, —«) (since —G(jw) does not enter the disk)
counter-clockwise a number of times equal to the number of unstable poles (ORHP) of G(s).

Alternative Method: Simple and Intuitive Approach
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v
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G(s)

Y(t,y)

A

Consider the system as shown in the diagram above, we are given that the (a), (b), and (c¢) conditions
in Exercise 1 Question 1 hold true as a result of Circle Criterion for sector non-linearity of ¥ € (a, 3).

Now let us consider an equivalent system, where G (s) = —G(s) and ¥r(t,y) = —9(t, y), as shown in
figure below:

-G(s) — Y

A

_¢(t7y)

We can see that the closed-loop system remains unchange, with the new sector non-linearity of ¢ €
(=B, —«). Now by assigning

—a = 0

-8 = ar

then by the second Circle Criterion, we can conclude that the closed-loop system is absolutely stable
in (ar,0) if G(s) is Huwitz and Gr(jw) = —G(jw) remains on the right of



2.

Similarly, by assigning

—a = fr

-8 = ar

then by the first Circle Criterion, we can conclude that the closed-loop system is absolutely stable in
(ar, Br), ar < Br < 0, if Gr(jw) = —G(jw) does not enter D(—pfr, —ar) and encircles it counter-
clockwise a number of times equal to the number of ORHP poles of G(s).

(a)

At equilibrium, @; = @9 = 0, we have

T = h($1‘+*I2)
To = I —-2h($1-+—$2):: ——h(xl +-$2)
Thus we have £1 = —x9 at equilibrium. Since y = x1 4 23, we have y = 0. We are given h(0) = 0,
and thus
ry =
T2 = 0

The origin is the unique equilibrium point.

We rewrite the system in the following form,
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Then,

G(s) = C(sI—-A!
ORI
3s+4
(s+1)2

and h(y) is a sector non-linearity in the range of
0<yh(y) <cy, Vy

Divide by 32,

and thus we finally have sector non-linearity in b € [0, ;=]. Since G(s) is Hurwitz here, by applying
Circle Criterion, the closed-loop system will be globally asymptotically stable if G( jw) remains
on the right of Re[z] = ——+

T clar’

For the case of ¢ = 0, there is no feedback and therefore the system is stable. Otherwise, since
both c,a; > 0, we also have the Nyquist plot of G(jw) stays at the closed right-half-plane (see
figure below), and therefore strictly on the right of —

c/al'



Nyquist Diagram
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3. It is given that

expand it, we have

Iy Ky > T (y)Y(y) >0
(Ky(y)'y > 0
OFN\T
(aT,) y =0
g—]; > 0, Vy=>0.

Since the gradient of F(y) is always greater or equal to 0 in this range, we know that F(y) is a mono-
tonically increasing function for y > 0. We thus conclude that F'(y) > F(0) for all y > 0.

Now consider a Lyapunov function candidate with P > 0 and n > 0,
y
V(z) = 2'Px+ 277/ DT (v)Kdv
0
y
= TPz + 277/ (K1p(v)Tdv
0

prx N 27’ /y (8F(U) )TdU
0

ov
= ' Pz +2y(F(y) - F(0))
Since we know F(y) > F(0) earlier, we then have
V(z) > 2" Pz >0

The Lyapunov function candidate here is exactly the same as the given one in the derivation of multi-
variable Popov criterion in the lecture note. Thus we have the rest of the proof shown in the lecture
note.



4. Consider the storage function S =V + 1yTy. We have S(0) = V(0) =0 and S > V > 0, we thus only

need to show that S < vTy for passivity.
S = V4+yly
V+ yTi,
VA yl[=(LgV) + ]
y [ (L,V)T + ] since V < 0

IN

By assuming that the feedback transformation was a negative feedback, we have LyV > 0. We thus
have

S < yTv szy

Hence the feedback system is passive.

Now let Z be the largest invariant set of the system contained in {z|y = 0}. Obviously, we have
7Z = {x|za = 0}. At this condition, the system reduces to its zero-dynamics system X.4. Since we
are given that the zero-dynamics are asymptotically stable, H is zero-state detectable (ZSD). Then
by using the passivity and stability theorem, since H is passive, S is C!, and y is C', we have the
feedback u = —y = —xo achieves asymptotic stability of the closed-loop system.

. Suppose there is a periodic solution y(t) = asinwt, taking the first-order harmonic terms, we have the
describing function
1 [ 1 [
N(a) = — Y(asinwt) sinwtdt + j— / Y (asinwt) cos wtdt.
Ta ), Ta ),

Since v(y) = 3° is an odd function, we have

1 T
N(a) = — Y (asinwt) sin wtdt
Ta ),
4 71’/2
= — a® sin® wtdt
Ta 0
4at /2
= i/ sin® widt
™ Jo
- 4a* 5-3-1 7
7T 6-4-2 2
- 5a*
8

To check the possibility of periodic solution, we solve the first-order harmonic balance

1+ N()G(w) = 0
1
G(j = ———
(Jw) N(a)
B e L
—w? 4 jw 5at
Solving them, we have
4/8
a = 2
)
w = 1



Thus, there is a possible periodic solution, with the fundamental frequency of 1 rad/s and amplitude

of </§ . To check the stability of the periodic solution, we see the following Nyquist plot of G(jw):

Nyquist Diagram
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We see that for any loop gains, periodic solutions will occur as G(jw) will intersect —ﬁ definitely.

Therefore the periodic solutions are stable.



