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1. (d) Suppose we have a SISO system,

ẋ = Ax+Bu, x ∈ ℝn, A Hurwitz

y = Cx, y, u ∈ ℝ
u = − (t, y),  ∈ [−k, 0], k > 0

Let V (x) = xTPx. Then,

V̇ (x) = ẋTPx+ xTPẋ

= [xTAT −  BT ]Px+ xTP [Ax−B ]

= xT [ATP + PA]x− 2xTPB 

Sector nonlinearity implies that −2[ky +  ] ≥ 0,

V̇ (x) ≤ xT [ATP + PA]x− 2xTPB − 2[ky +  ] 

= xT [ATP + PA]x+ 2xT [−kCT − PB] − 2 2

Now, find P > 0, L and " > 0 such that

ATP + PA = −LTL− "P
PB = −kCT − LT

√
2,

then,

V̇ (x) ≤ −"xTPx− xTLTLx+ 2xTLT
√

2 − 2 2

= −"xTPx− [Lx−
√

2 ]T [Lx−
√

2 ]

≤ −"xTPx
< 0

According to Kalman-Yakubovich-Popov (Positive Real) Lemma, we can construct a transfer
matrix

Z(s) = −kC(sI −A)−1B + I

where Z(s) is strictly positive real (SPR). We then have

Re[−kG(j!) + I] > 0 ⇐⇒ Re[−G(j!)] > −1

k
.

For the special case −k = �, we have the system stable in (�, 0), if G is Hurwitz and

Re[−G(j!)] >
1

�
.
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(e) We can apply similar argument as shown in the lecture notes: Consider the loop transformation

where K� is chosen such that

GT (s) = G(s)[I −K�G(s)]−1

is asymptotically stable. Now let the new non-linearity to be  T (t, y) =  (t, y) +K�y. Suppose
 is a [−K� ,−K�]-sector non-linearity where K� > K�, we have

 ∈ [−K� ,−K�] =⇒ [ +K�y][ +K�y] ≤ 0

=⇒  T [ T −K�y +K�y] ≤ 0

=⇒  T [ T + (K� −K�)y] ≤ 0

=⇒  T ∈ [−K, 0] for K = K� −K� > 0

Thus, applying the conclusion from (d) to the system GT (s) and the sector non-linearity  T ∈
[−K, 0], the sufficient condition for absolutely stable of the closed-loop is GT (s) Hurwitz and
ZT (s) = I −KGT (s) strictly positive real.

Here, since K� was taken to be the boundary of the sector, we need to verity the stability of
GT (s). Let K� = −�, and K� = −�, we have

GT (s) = G(s)[1 + �G(s)]−1

and since

ZT (s) = 1− (� − �)
G(s)

1 + �G(s)

=
1 + �G(s)

1 + �G(s)

is strictly positive real. we have

Re
[1 + �G(j!)

1 + �G(j!)

]
> 0, ∀! > 0.

For � < � < 0, base on the diagram shows below, we have

Re
[1 + �G(j!)

1 + �G(j!)

]
> 0 ⇐⇒ Re

[−1/�−G(j!)

−1/� −G(j!)

]
> 0

⇐⇒ Re
[BP
AP

]
> 0

⇐⇒ cos (�1 − �2) > 0

⇐⇒ � /∈
[�

2
,

3�

2

]
⇐⇒ P not in the circle D(−�,−�)
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Since GT (s) = G(s)[1 − �(−G(s))]−1 has to be Hurwitz for the result to hold, it implies that
−G(j!) needs to encircle (1/�, 0j) or disk D(−�,−�) (since −G(j!) does not enter the disk)
counter-clockwise a number of times equal to the number of unstable poles (ORHP) of G(s).

Alternative Method: Simple and Intuitive Approach

Consider the system as shown in the diagram above, we are given that the (a), (b), and (c) conditions
in Exercise 1 Question 1 hold true as a result of Circle Criterion for sector non-linearity of  ∈ (�, �).

Now let us consider an equivalent system, where GT (s) = −G(s) and  T (t, y) = − (t, y), as shown in
figure below:

We can see that the closed-loop system remains unchange, with the new sector non-linearity of  T ∈
(−�,−�). Now by assigning

−� = 0

−� = �T

then by the second Circle Criterion, we can conclude that the closed-loop system is absolutely stable
in (�T , 0) if G(s) is Hurwitz and GT (j!) = −G(j!) remains on the right of

Re[z] = − 1

�
=

1

�T
.
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Similarly, by assigning

−� = �T

−� = �T

then by the first Circle Criterion, we can conclude that the closed-loop system is absolutely stable in
(�T , �T ), �T < �T < 0, if GT (j!) = −G(j!) does not enter D(−�T ,−�T ) and encircles it counter-
clockwise a number of times equal to the number of ORHP poles of G(s).

2. (a) At equilibrium, ẋ1 = ẋ2 = 0, we have

x1 = ℎ(x1 + x2)

x2 = x1 − 2ℎ(x1 + x2) = −ℎ(x1 + x2)

Thus we have x1 = −x2 at equilibrium. Since y = x1 +x2, we have y = 0. We are given ℎ(0) = 0,
and thus

x1 = 0

x2 = 0

The origin is the unique equilibrium point.

(b) We rewrite the system in the following form,

ẋ =

[
−1 0
1 −1

]
x+

[
1
2

]
u

y =
[
1 1

]
x

u = −ℎ(y)

Then,

G(s) = C(sI −A)−1B

=
[
1 1

] [s+ 1 0
−1 s+ 1

]−1 [
1
2

]
=

3s+ 4

(s+ 1)2

and ℎ(y) is a sector non-linearity in the range of

0 ≤ yℎ(y) ≤ cy, ∀y

Divide by y2,

0 ≤ ℎ(y)

y
≤ c

y
, ∀y

We know ℎ(y) = 0 for all ∣y∣ ≤ a1, and ℎ(y) ≤ c for all ∣y∣ > a1, we can form a tight bound

0 ≤ ℎ(y)

y
≤ c

y
≤ c

a1
, ∀y

and thus we finally have sector non-linearity in ℎ ∈ [0, ca1 ]. Since G(s) is Hurwitz here, by applying
Circle Criterion, the closed-loop system will be globally asymptotically stable if G(j!) remains
on the right of Re[z] = − 1

c/a1
.

For the case of c = 0, there is no feedback and therefore the system is stable. Otherwise, since
both c, a1 > 0, we also have the Nyquist plot of G(j!) stays at the closed right-half-plane (see
figure below), and therefore strictly on the right of − 1

c/a1
.
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3. It is given that

 T (y)[ (y)−Ky] ≤ 0,

expand it, we have

 T (y)Ky ≥  T (y) (y) ≥ 0

(K (y))T y ≥ 0(∂F
∂y

)T
y ≥ 0

∂F

∂y
≥ 0, ∀y ≥ 0.

Since the gradient of F (y) is always greater or equal to 0 in this range, we know that F (y) is a mono-
tonically increasing function for y ≥ 0. We thus conclude that F (y) ≥ F (0) for all y > 0.

Now consider a Lyapunov function candidate with P > 0 and � > 0,

V (x) = xtPx+ 2�

∫ y

0

 T (v)Kdv

= xTPx+ 2�

∫ y

0

(K (v))T dv

= xTPx+ 2�

∫ y

0

(∂F (v)

∂v

)T
dv

= xTPx+ 2�(F (y)− F (0))

Since we know F (y) ≥ F (0) earlier, we then have

V (x) ≥ xTPx > 0

The Lyapunov function candidate here is exactly the same as the given one in the derivation of multi-
variable Popov criterion in the lecture note. Thus we have the rest of the proof shown in the lecture
note.
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4. Consider the storage function S = V + 1
2y
T y. We have S(0) = V (0) = 0 and S ≥ V ≥ 0, we thus only

need to show that Ṡ ≤ vT y for passivity.

Ṡ = V̇ + yT ẏ

= V̇ + yT ẋ2

= V̇ + yT [−(LgV )T + v]

≤ yT [−(LgV )T + v] since V̇ ≤ 0

By assuming that the feedback transformation was a negative feedback, we have LgV > 0. We thus
have

Ṡ ≤ yT v = vT y

Hence the feedback system is passive.

Now let Z be the largest invariant set of the system contained in {x∣y = 0}. Obviously, we have
Z = {x∣x2 = 0}. At this condition, the system reduces to its zero-dynamics system Σzd. Since we
are given that the zero-dynamics are asymptotically stable, H is zero-state detectable (ZSD). Then
by using the passivity and stability theorem, since H is passive, S is C1, and y is C1, we have the
feedback u = −y = −x2 achieves asymptotic stability of the closed-loop system.

5. Suppose there is a periodic solution y(t) = a sin!t, taking the first-order harmonic terms, we have the
describing function

N(a) =
1

�a

∫ �

�

 (a sin!t) sin!tdt+ j
1

�a

∫ �

�

 (a sin!t) cos!tdt.

Since  (y) = y5 is an odd function, we have

N(a) =
1

�a

∫ �

�

 (a sin!t) sin!tdt

=
4

�a

∫ �/2

0

a5 sin6 !tdt

=
4a4

�

∫ �/2

0

sin6 !tdt

=
4a4

�
⋅ 5 ⋅ 3 ⋅ 1

6 ⋅ 4 ⋅ 2
⋅ �

2

=
5a4
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To check the possibility of periodic solution, we solve the first-order harmonic balance

1 +N(a)G(j!) = 0

G(j!) = − 1

N(a)

1− j!
−!2 + j!

= − 8

5a4

Solving them, we have

a =
4

√
8

5
! = 1
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Thus, there is a possible periodic solution, with the fundamental frequency of 1 rad/s and amplitude

of 4

√
8
5 . To check the stability of the periodic solution, we see the following Nyquist plot of G(j!):

We see that for any loop gains, periodic solutions will occur as G(j!) will intersect − 1
N(a) definitely.

Therefore the periodic solutions are stable.
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