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Abstract

In this project, a sliding mode controller is designed to a linear plant with non-linear dis-
turbances. The performance of the designed controller is then verified via simulation using
MATLAB and Simulink. Then, the sign function in the designed controller will be replaced
by a sat function, and the performance of the new controller will be investigated. Finally,
some conclusion remarks will be made according to the simulation results.
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Chapter 1

Sliding Mode Controller Design

Sliding mode control is a special version of an on-off control. The key idea is to apply strong
control action when the system deviates from the desired behavior. The motivation of this
controller is to introduce the Lyapunov function

V (x) =
�2(x)

2

where �(x) is the switching surface of the system. A controller will be designed in a way
such that

V̇ (x) < 0

for all t. By then, the controlled system response will then be guaranteed to reach the
switching surface, where �(x) = 0, in finite value of t.

1.1 Plant Analysis

In this setup, consider the system

ẋ1 = ax1 + bu+ d

ẋ2 = x1

The switching surface is then defined by

�(x) = c1x1 + c2x2

where a, b, c1, and c2 are known a priori, and d is a bounded disturbance with ∣d∣ ≤ dmax.
We need to design a variable structure controller such that x = 0 is an asymptotically stable
solution.

1.2 Controller Design

We rewrite the system in the state-space structure

ẋ =

(
a 0
1 0

)
x+

(
b
0

)
u+

(
1
0

)
d

= f + gu+ ℎd (1.1)
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where x =

(
x1
x2

)
, f =

(
a 0
1 0

)(
x1
x2

)
=

(
ax1
x1

)
, g =

(
b
0

)
, and ℎ =

(
1
0

)
. The switching

surface is then defined by

�(x) = c1x1 + c2x2 = pTx (1.2)

where pT =
(
c1 c2

)
.

To determine a control law that keeps the system on �(x) = 0, we introduce the Lyapunov
function

V (x) =
�2(x)

2
(1.3)

The following control law design will ensure that V̇ (x) < 0 for all t except when �(x) = 0.

Control Law

From (1.1) to (1.3),

V̇ (x) = ��̇

= �pT ẋ

= �(pTf + pTgu+ pTℎd) (1.4)

We choose the control law

u = −p
Tf

pTg
− pTℎdmax + �

pTg
sign(�(x)) (1.5)

such that (1.4) becomes

V̇ (x) = �
(
pTf + pTg

[
− pTf

pTg
− pTℎdmax + �

pTg
sign(�)

]
+ pTℎd

)
= �(pTℎd− (pTℎdmax + �)sign(�))

= �pTℎd− ∣�∣(pTℎdmax + �)

= −pTℎ(∣�∣dmax − �d)− �∣�∣ (1.6)

Stability Analysis

We know ∣�∣dmax ≥ �d for any value of �. Thus, from (1.6), we have V̇ (x) < 0 for all � > 0.
Convergence of V (x) to 0 is guaranteed.

When the output reaches the switching surface, � = 0, the dynamic of the system is deter-
mined by the value of pT . In this project,

� = pTx = c1x1 + c2x2

= c1ẋ2 + c2x2 = 0 (1.7)
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Solving this differential equation, we will get

x2(t) = e−(c2/c1)tx2(0) (1.8)

x1(t) = −c2
c1
e−(c2/c1)tx2(0) (1.9)

We see that, as long as c1 and c2 having the same sign, or in other words, the equation P (s) =
c1s + c2 has all its roots in the left-half plane, the state x will converge to 0 exponentially,
regardless of the initial condition, x(0).
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Chapter 2

Simulation

In this chapter, a simple simulation is carried out using MATLAB and Simulink to verify
the performance of the designed sliding mode controller.

2.1 Simulation Parameters

As given by the experiment sheets, the plant parameters are

a 2
b 1
c1 1
c2 1
d 0.9 sin (628t)

dmax 0.9
� 0.5

Thus, we have

pT =
(
1 1

)
f =

(
2x1
x1

)
g =

(
1
0

)
ℎ =

(
1
0

)
The system plant,

ẋ =

(
2 0
1 0

)
x+

(
1
0

)
u+

(
1
0

)
d

� =
(
1 1

)
x (2.1)
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and the control law becomes

u(t) = −3x1 − (0.9 + 0.5)sign(�)

= −3x1 − 1.4sign(�) (2.2)

2.2 Simulation Results

Figure 2.1: Phase plane trajectory of the system response for x1(0) = x2(0) = 1 as initial
condition.

With Initial Condition, x1(0) = x2(0) = 1

Simulation is done using MATLAB and Simulink to verify the controller. The simulation
results are shown in Fig. 2.1, Fig. 2.2 and Fig. 2.3. From the phase plane trajectory plot,
we see that the trajectory starts from the initial points (1, 1), move towards the switching
surface x1 + x2 = 0, then slide along the surface to reach the equilibrium point x = 0.
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Figure 2.2: State x1 and x2 of the system response for x1(0) = x2(0) = 1 as initial condition.

According to Fig. 2.2, we can see that both signal x1 and x2 reaches 0 after about 7 seconds.
Also, noted from the x1 plot, we could see that the trajectory reaches the switching surface
when the time is approximately t� = 1.4 seconds.

However, for the control signal of the system, this control law has the drawback that the
control signal chatters when the system trajectory is moving on the switching surface (refers
Fig. 2.3). This is due to the use of a sign(�) function in the control law, i.e.

u(t) = −3x1 − 1.4sign(�)

Judging from this control law, we note that when the switching surface � = x1 + x2 reaches
0, numerical quantization errors of digital processor might cause it fluctuate along 0. Thus,
at one instant it might be a positive small number, and at another instant, a negative small
number. Switching between positive and negative small number of �, will cause the control
signal, u(t), to fluctuate along the envelope of the signal, with the fluctuation amplitude of
1.4 units, as confirmed from the plot.
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Figure 2.3: Control signal of the system response for x1(0) = x2(0) = 1 as initial condition.

With Other Initial Conditions, x1(0), x2(0) ≤ 2

Simulation is done to the same controller with different initial conditions as shown in the
table below:

x1(0) x2(0)
-2 1
-2 0
-2 -1
-2 -2
2 2
2 1
2 0
2 -1

The simulation results are shown in Fig. 2.4, Fig. 2.5 and Fig. 2.6. As expected, regardless
of the initial position, the controller manage to force the state x to 0 after some time. Also,
we can notice that the further the initial condition is from the switching surface, the longest
it takes to reach the surface. According to Fig. 2.6, chattering of control signal occurs after
the phase plane trajectory reaches the switching surface for all the different initial conditions
investigated.
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The control signal chattering drawback can be improved or eliminated by simple modification
of the control law. They will be discussed in detail in the next chapter.

Figure 2.4: Phase plane trajectory of the system response for different x1(0) and x2(0) as
initial conditions.
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Figure 2.5: State x1 and x2 of the system response for different x1(0) and x2(0) as initial
conditions. Blue line and red line correspond to x1 and x2 respectively.
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Figure 2.6: Control signal of the system response for different x1(0) and x2(0) as initial
conditions.
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Chapter 3

Smooth Control Law

The control law designed in the previous chapter has the drawback that the relay chatters,
as shown in the simulation results. One way to avoid this is to make the relay characteristics
smoother.

3.1 Control Law Design

In order to eliminate the chattering of the control signal, the sign function in the original
control law,

u = −p
Tf

pTg
− pTℎdmax + �

pTg
sign(�(x))

is replaced by a sat function,

sat(�, ") =

⎧⎨⎩
1 � > "
�/" −" ≤ � ≤ "
−1 � < −"

The control law is then

u = −p
Tf

pTg
− pTℎdmax + �

pTg
sat(�(x), ") (3.1)

= −3x1 − 1.4sat(�(x), ")

3.2 Simulation

Simulation is carried out to investigate the effect of this smooth control law implemented.

With " = 0.01

For " = 0.01, the control law becomes

u = −3x1 − 1.4sat(�(x), 0.01) (3.2)
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Figure 3.1: Phase plane trajectory of the system response with " = 0.01.

The simulation results are shown in Fig. 3.1, Fig. 3.2, and Fig. 3.3. As we could observe,
the controller works well as the trajectory will be driven back to the switching surface after
some time. We can also see that t� of this system is approximately the same as the one in the
previous chapter. However, looking at the control signal, u(t), chattering of the signal still
occurs at switching surface, although the magnitude of chattering is much smaller compare to
the controller with sign function. This improvement has motivated me to further investigate
the performance of the system with both larger and smaller ".

With " = 1

In this section, the " value is increased to 1. The plant is simulated and the phase plane
trajectory and control signal are plotted in Fig. 3.4 and Fig. 3.5 respectively. From the
Fig. 3.4, we notice that the trajectory takes longer time to reach the switching surface
as compared with the previous case. For control signal wise, according to Fig. 3.5, the
chattering problem has decreased significantly. When the response plot is zoomed, we can
see that although chattering occurs, the magnitude of the chattering is in the order of 10−3,
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Figure 3.2: State x1 and x2 of the system response with " = 0.01.

which is so small that it can be assumed 0.

With " = 0.0001

In this section, the " value is decreased to 0.0001. The plant is simulated and the phase
plane trajectory and control signal are plotted in Fig. 3.6 and Fig. 3.7 respectively. From
the Fig. 3.6, we notice that the trajectory reaches the switching surface faster compared
with the previous case of " = 1. For control signal wise, according to Fig. 3.7, the chattering
problem occurs again. When the response plot is zoomed, we can see that the magnitude of
the chattering is about 1, which is still smaller than the chattering amplitude of the system
with sign function.

Conclusion

With the simulation, we can conclude that, by replacing the sign function to the sat func-
tion in the control law, we could minimize the chattering drawbacks of the control signal.
Although the chattering is not completely eliminated, we could control the amplitude of it
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Figure 3.3: Control signal of the system response with " = 0.01.

by varying the parameter ". The lower the value of " is, the sat function will approximate
sign function better, and thus chattering occurs in higher magnitude. However, when the
value of " is lowered, the chattering decreases, but it has a trade off in terms of performance
of the system.

Theoretically, by replacing the sign function to a sat function with a fixed ", we have the
Lyapunov function

V̇ (x) = �(0.9 sin (628t))− �(sat(�, "))(1.4) (3.3)

When � is at the linear zone, � ≤ � in general, we have

V̇ (x) = �(0.9 sin (628t))− �2

"
(1.4) (3.4)

As we can see, for smaller ", the value of V̇ is more negative. Thus the trajectory will reach
the switching surface relatively faster.
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Figure 3.4: Phase plane trajectory of the system response with " = 1.

Figure 3.5: Control signal of the system response with " = 1.
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Figure 3.6: Phase plane trajectory of the system response with " = 0.0001.

Figure 3.7: Control signal of the system response with " = 0.0001.
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Chapter 4

Source Codes

The following MATLAB and Simulink files are used in this project to simulate the sliding
mode controller:

1. sliding plot.m

2. sliding plot 10.m

3. CA2 sign.mdl

4. CA2 sat.mdl
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sliding plot.m

This is a MATLAB script to plot the input signal, u(t), states x1 and x2, and the phase
plane trajectory of the system.

% Define time (20 seconds with 1000Hz sampling freq)

t = linspace(0,20,20001);

ppt = [-3 3];

pptp = [3 -3];

% u(t)

figure(1);

plot(t,u);

title(’Control signal’);

% x_1 and x_2

figure(2);

subplot(2,1,1); plot(t, x(:,1)); title(’x_1’);

subplot(2,1,2); plot(t, x(:,2)); title(’x_2’);

% Phase Plane Trajectory

figure(3);

plot(ppt,pptp,’r:’,x(:,1),x(:,2),’b-’);

xlabel(’x_1’); ylabel(’x_2’);

legend(’Switching surface’,’Phase Plane Trajectory’);
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sliding plot 10.m

This is a MATLAB script to plot the input signal, u(t), states x1 and x2, and the phase
plane trajectory of the system of 10 different initial conditions.

% Define time (10 seconds with 1000Hz sampling freq)

t = linspace(0,10,10001); ppt = [-3 3]; pptp = [3 -3];

figure(1);

subplot(4,2,1); plot(t,u1); title(’(-2,1)’);

subplot(4,2,3); plot(t,u2); title(’(-2,0)’);

subplot(4,2,5); plot(t,u3); title(’(-2,-1)’);

subplot(4,2,7); plot(t,u4); title(’(-2,-2)’);

subplot(4,2,2); plot(t,u5); title(’(2,2)’);

subplot(4,2,4); plot(t,u6); title(’(2,1)’);

subplot(4,2,6); plot(t,u7); title(’(2,0)’);

subplot(4,2,8); plot(t,u8); title(’(2,-1)’);

figure(2);

subplot(4,2,1); plot(t, x1(:,1),’b-’,t,x1(:,2),’r-’); title(’(-2,1)’);

subplot(4,2,3); plot(t, x2(:,1),’b-’,t,x2(:,2),’r-’); title(’(-2,0)’);

subplot(4,2,5); plot(t, x3(:,1),’b-’,t,x3(:,2),’r-’); title(’(-2,-1)’);

subplot(4,2,7); plot(t, x4(:,1),’b-’,t,x4(:,2),’r-’); title(’(-2,-2)’);

subplot(4,2,2); plot(t, x5(:,1),’b-’,t,x5(:,2),’r-’); title(’(2,2)’);

subplot(4,2,4); plot(t, x6(:,1),’b-’,t,x6(:,2),’r-’); title(’(2,1)’);

subplot(4,2,6); plot(t, x7(:,1),’b-’,t,x7(:,2),’r-’); title(’(2,0)’);

subplot(4,2,8); plot(t, x8(:,1),’b-’,t,x8(:,2),’r-’); title(’(2,-1)’);

figure(3);

plot(ppt,pptp,’r:’); hold on;

plot(x4(:,1),x4(:,2),’b--’);

plot(x5(:,1),x5(:,2),’k-’);

plot(x3(:,1),x3(:,2),’g--’);

plot(x6(:,1),x6(:,2),’m-’);

plot(x2(:,1),x2(:,2),’m--’);

plot(x7(:,1),x7(:,2),’g-’);

plot(x1(:,1),x1(:,2),’k--’);

plot(x8(:,1),x8(:,2),’b-’);

hold off; xlabel(’x_1’); ylabel(’x_2’);

legend(’Switching surface’,’(-2,-2)’,’(2,2)’,’(-2,-1)’,

’(2,1)’,’(-2,0)’,’(2,0)’,’(-2,1)’,’(2,-1)’);
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CA2 sign.mdl

This is a Simulink block diagram for the sliding mode control using sign function.
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CA2 sat.mdl

This is a Simulink block diagram for the sliding mode control using sat function.
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