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Chapter 1

Introduction

This project is one of the requirement to fulfill the continuous assessment of the module
codename Computer Control Systems (EE5103R) offered by the Department of Electrical
and Computer Engineering (ECE) in National University of Singapore (NUS), Singapore.

In this project, we are required to design and investigate control laws on the hard disk
drive servo system. It is given that the hard disk drive servo system has the following
voice-coil-motor actuator:

G(s) =
a

s2
ω2

r

s2 + 2ζrωrs+ ω2
r

where a = 11.3043 × 107, ζr = 0.015 is the damping ratio of the resonance mode, and
ωr = 2π(7560) is the natural frequency of the resonance mode. We are required to
perform several tasks with this system:

1. Design a nominal controller by using pole-placement technique in continous-time
to have closed-loop damping ratio of 0.8 and the closed-loop bandwidth must be
1200 Hz. Show the step response of the closed-loop system with resonance mode
and closed-loop bode plot showing the closed-loop bandwidth;

2. It is required to implement the continuous-time control in part 1 using a digital
computer. Find the discrete equivalent of the controller by using any appropriate
method that we have learnt from the course and perform simulations of this digital
control system for a step response using MATLAB and Simulink. The sampling
frequency must be 30 KHz. Perform this simulation using ZOH only;

3. Do the above simulations for the sampling frequencies of 2 KHz, 5 KHz, and 10
KHz. Comment on the results;

4. Compute the number of bits required to realize the controller in part 2 in direct
form in a digital computer to keep the error in pole locations to be less than 0.0002.

In this project report, each of the requirements listed above will be presented in detailed
in the respective chapter, and the source codes to produce the result will be included in
the last chapter.
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Chapter 2

Nominal Controller Design via Pole

Placement Technique using State

Feedback Approach

The nominal plant model of the voice-coil-motor actuator without the resonant mode is
a double integrator system

G(s) =
11.3043× 107

s2
.

By converting it to the state-space representation, we can utilize the MATLAB function
ss, and obtain the following state-space equation

ẋ = Ax+Bu,

y = Cx,

where A =

[

0 0
1 0

]

, B =

[

8192
0

]

, and C =
[

0 13800
]

. Here, x is the state variables

of the plant, u is the input to the plant, and y is the output of the plant, so that the
pole-placement technique using state feedback can be applied to it.

As observed from the C matrix, only the position of the voice-coil-motor actuator is
available for control. Pole-placement technique using state feedback will require all states
of the plant to be available to the controller, in our case, 2 states. To estimate the
immeasurable state, a full state observer is utilized in this project. Combining the full
state observer with state feedback control law u = −Kx, we have

˙̂x = Ax̂+Bu+ L(y − Cx̂),

u = −Kx̂.

where L is the observer gain, K is the state feedback gain, and x̂ is the estimated states
of the plant.

In the design of the nominal controller, since the resonant mode of the system was not
included, the desired closed-loop characteristic equation is

Ca(s) = s2 + 2(0.8)(2π)(1486) + (2π)2(1486)2,
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Figure 2.1: Closed-loop bode plot for system without resonant mode

such that it has a damping ratio of 0.8 and the closed-loop bandwidth of 1200 Hz. By
the embedded pole function in MATLAB, we can obtain the desired pole locations at

s = −7469.5± 5602.1j.

As for the observer dynamic, a rule of thumb is to position the pole locations at 3 to 5
times faster than the control pole locations. In our case, the observer pole location is
chosen as

s = −28010,

for both the observer poles. By utilizing the acker function, we can obtain the desired
control gain and observer gain by running the Ackermann’s formula, which is

K =
[

2 10642
]

, L =

[

56857
4

]

.

The bandwidth is given by ωb = 1200.4 Hz as calculated by MATLAB, which is very
close to the requirement.
Fig. 2.1 shows the bode plot of the closed-loop system without the resonant mode. As
we can observe, the -3 dB cutoff frequency is at 7540 rad/s which is around 1200 Hz. Fig.
2.2 shows the step response of the system, which characterized the desired closed-loop
pole chosen above.

Fig. 2.3 shows the bode plot of the closed-loop system with the resonant mode. Here, we
notice that there is a peak (resonant frequency) at around 7080 Hz which is very close to
the resonant mode given in the question (7560 Hz). Fortunately, the magnitude of the
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Figure 2.2: Step response for system without resonant mode

resonant frequency is way below 0 dB and thus the system is stable. Fig. 2.4 shows the
step response of such system. As we can observe, the resonant mode causes oscillation to
the system, and the oscillation frequency can be calculated by taking the time difference
between 2 peaks. it is calculated as 7462 Hz which is close to 7560 Hz given. As a result
of a more oscillatory step response, the settling time of the response is longer and the
overshoot is larger. Nevertheless, the rise time is approximately the same and both step
responses are able to achieve zero steady state error as a result of the inclusion of the
scaling gain.
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Figure 2.3: Closed-loop bode plot for system with resonant mode
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Chapter 3

Digital Controller at Sampling

Frequency of 30 KHz

The controller designed in the previous chapter will be discretized using the c2d function
in MATLAB. Here, Tustin approximation method is used for the discretization of the
controller. Tustin approximation, also called bilinear transformation, has an advantage
that it preserve the stability of the system.

The discrete transfer function of the controller discretized using Tustin approximation at
sampling frequency of 30 KHz is

C(z) =
−0.9845z2 − 0.1265z + 0.858

z2 − 0.3954z + 0.1099
.

The Simulink block diagram for simulation of the closed-loop control configuration is
shown in Fig. 7.1. The zero order hold is placed before the plant with resonant mode
because the plant model has to be a continuous time model. Output of the Simulink
simulation will be directed to MATLAB environment for plotting.

Fig. 3.2 and 3.3 show the step response and the bode plot of the system response with
discretized controller. It is seen that with sampling rate of 30 KHz, it is fast enough
to preserve the similar response as of the continuous time controller. Notice that in the
latter figure, the bode plot of the system is compared to the original bode plot of the
continuous system. It seems like that resonant mode is even suppressed and the system
has a higher bandwidth.

Figure 3.1: Block diagram in Simulink

7



0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10
−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

S
te

p 
re

sp
on

se

Figure 3.2: Step response of the digital control system
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Chapter 4

Analysis on Sampling Frequency of

10 KHz, 5 KHz and 2 KHz

In this chapter, all the controller are discretized with the Tustin approximation, or in
other words, the bilinear transformation. For the sampling frequency of 10 KHz, we have
the following discretized controller

C(z) =
−1.004z2 − 0.343z + 0.6612

z2 + 0.7419z + 0.1954
.

The step response and the bode plot is shown in Fig. 4.1 and 4.2. For a sampling fre-
quency of 10 KHz, the step response becomes very oscillatory with a much larger overshot
of about 40 percent as can be seen. It is, however, still a stable system because the sam-
pling frequency is larger than twice the closed-loop bandwidth.

For the sampling frequency of 5 KHz, we can obtain the following transfer function

C(z) =
−0.8236z2 − 0.4805z + 0.343

z2 + 1.278z + 0.4364
.

The step response and the bode plot is shown in Fig. 4.3 and 4.4. For a sampling fre-
quency of 5 KHz, the step response shows an unstable oscillation with magnitude grows
larger with time. It can be concluded that the system can not work well in such low
sampling frequency, as it’ll destabilized the whole system.

Finally, the system is discretized with 2 KHz sampling frequency. The transfer function
is given by

C(z) =
−0.5938z2 − 0.6025z − 0.008716

z2 + 1.685z + 0.7174
.

The step response and the bode plot is shown in Fig. 4.5 and 4.6. For a sampling
frequency of 2 KHz, the step response shows an unstable oscillation with even larger
magnitude as to compared to the previous one. It can be concluded that the system can
not work well in such low sampling frequency, since the sampling frequency is already
lower than twice the system bandwidth, and thus it’ll destabilized the whole system.
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Figure 4.1: Step response with sampling frequency 10 KHz
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Figure 4.2: Bode plot with sampling frequency 10 KHz
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Figure 4.3: Step response with sampling frequency 5 KHz
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Figure 4.4: Bode plot with sampling frequency 5 KHz
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Figure 4.5: Step response with sampling frequency 2 KHz
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Figure 4.6: Bode plot with sampling frequency 2 KHz
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Chapter 5

Bits Number Requirements

In this chapter, the number of bits required to keep the error in pole locations to be less
than 0.0002 is calculated.

Taking the sampling frequency to be 30 KHz, we have the pole locations of the controller
at

z = 0.1977± 0.2661j.

Coefficient-pole sensitivity equation is given by

δpk = −
pn−i
k

∏

j 6=k(pk − pj)
δai,

where δpk represents the amount of change in the polo location and δai represents the
amount of change in the coefficient of the discrete characteristic polynomial.

To compute the number of bits required to realize the controller, the amount of allowed
variation in each coefficient of the controller in discrete form, needs to be determined. It
is given that the error in pole locations has to be less than 0.0002, thus the amount of
allowed variation in each coefficient can be determined using the coefficient-pole sensi-
tivity equation as shown above. Since there are complex poles, the values of δai will be
complex as well. The results are shown in the table below:

δa1 δa2
δp1 = 0.0002 −0.0002577− 0.0001915j −0.0001064j
δp2 = 0.0002 −0.0002577 + 0.0001915j 0.0001064j

From the table above, the minimum amount of allowed variation in ai is 0.0001064. This
amount of variation has to be able to be represented by the discrete system. Therefore,
the number of bits required to realize the controller will be

2−n = 0.0001064

n = 13.19.

As we can see, we must have at least 14 bits (> 13.19) to realize the controller.
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Chapter 6

Conclusion

In this project, a hard disk drive servo system with resonant mode is first analyzed, then
is controlled by a continuous time controller.

The continuous time controller is then discretized to the digital controller, by using Tustin
approximation method. Different sampling frequencies, i.e., 30 KHz, 10 KHz, 5 KHz, and
2 KHz are tested and the controller works in both 30 KHz and 10 KHz sampling frequency
only.

Lastly, the number of bits that is required in sampling frequency of 30 KHz, such that
the pole location of the controller is as accurate in the margin of 0.0002 is calculated,
which is approximately 14 bits.
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Chapter 7

Source Codes

The following MATLAB and Simulink files are used in this projects:

1. A0033585A.m

2. A0033585A.mdl

A0033585A.m

% This is Computer Control Systems project

%% Part 1: State −feedback
sys1 = tf([11.3043e7],[1 0 0]);
sys1 ss = ss(sys1);

% w = 1486 for CL bandwidth of 1200 Hz (desired system)
w = 1486;
sys ref = tf([4 * pi * pi * w* w],[1 2 * 0.8 * 2* pi * w 4* pi * pi * w* w]);

% Desired closed −loop poles
P = pole(sys ref);

% State feedback controller K
K = acker(sys1 ss.a, sys1 ss.b, P);

% Observer poles
Po = −abs(P) * 3;

% Observer gain L
L = acker(sys1 ss.a', sys1 ss.c', Po)';

% Overall controller
Ac = sys1 ss.a − sys1 ss.b * K − L * sys1 ss.c;
Bc = L;
Cc = −K;
Dc = 0;
C ss = ss(Ac, Bc, Cc, Dc);

% Closed loop system

15



Cl ss = feedback(sys1 ss, C ss, 1);

% Multiply by DC gain for DC 1
Ks = 1/dcgain(Cl ss);
Cl ss = Ks * Cl ss;

% Check pole location
pole(Cl ss);
% Check bandwidth
bandwidth(Cl ss)/(2 * pi);

% Plot bode and step
figure(1);
bode(Cl ss);
figure(2);
step(Cl ss);

% Combine with resonant mode
sys2 = tf((2 * pi * 7560)ˆ2,[1 2 * 0.015 * 2* pi * 7560 (2 * pi * 7560)ˆ2]);
sys2 ss = ss(sys2);

%New closed loop:
Cl ss new = feedback(sys1 ss * sys2 ss, C ss, 1);
Cl ss new = Ks* Cl ss new;
figure(3);
bode(Cl ss new);
figure(4);
step(Cl ss new);

%% Question 2 and 3: digital controller
% Sampling time, Ts (varied for question 3)
Ts = 1/30000;

% Sampling with tustin method
C tf = tf(C ss);
Cd tf = c2d(C tf, Ts, 'tustin' )
[C num, C den] = tfdata(Cd tf, 'v' );

% Plant sampled with zoh
Gnomd = c2d(sys1,Ts, 'zoh' );
Gres d = c2d(sys2,Ts, 'zoh' );

Cld tf = feedback(Gnom d* Gres d, Cd tf, 1);
Cld tf = Ks * Cld tf;

% Plot step and bode of both cont and digi plant
sim( 'a0033585a.mdl' )
figure(5)
y = output.signals.values;
t = output.time;
plot(t,y)
xlabel( 'Time (sec)' )
ylabel( 'Step response' )

figure(6)
bode(Cld tf, Cl ss new)
legend( 'Discrete controller' , 'Continuous controller' );
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%% question 4, number of bits
P = pole(Cd tf)
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Figure 7.1: Block diagram in Simulink
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